Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
3.
J Clin Med ; 11(1)2021 Dec 30.
Article in English | MEDLINE | ID: covidwho-1580634

ABSTRACT

BACKGROUND: The evidence for the efficacy of glucocorticoids combined with tocilizumab (TCZ) in COVID-19 comes from observational studies or subgroup analysis. Our aim was to compare outcomes between hospitalized COVID-19 patients who received high-dose corticosteroid pulse therapy and TCZ and those who received TCZ. METHODS: A retrospective single-center study was performed on consecutive hospitalized patients with severe COVID-19 between 1 March and 23 April 2020. Patients treated with either TCZ (400-600 mg, one to two doses) and methylprednisolone pulses (MPD-TCZ group) or TCZ alone were analyzed for the occurrence of a combined endpoint of death and need for invasive mechanical ventilation during admission. The independence of both treatment groups was tested using machine learning classifiers, and relevant variables that were potentially different between the groups were measured through a mean decrease accuracy algorithm. RESULTS: An earlier date of admission was significantly associated with worse outcomes regardless of treatment type. Twenty patients died (27.0%) in the TCZ group, and 33 (44.6%) died or required intubation (n = 74), whereas in the MPD-TCZ group, 15 (11.0%) patients died and 29 (21.3%) patients reached the combined endpoint (n = 136; p = 0.006 and p < 0.001, respectively). Machine learning methodology using a random forest classifier confirmed significant differences between the treatment groups. CONCLUSIONS: MPD and TCZ improved outcomes (death and invasive mechanical ventilation) among hospitalized COVID-19 patients, but confounding variables such as the date of admission during the COVID-19 pandemic should be considered in observational studies.

4.
Sao Paulo Med J ; 140(1): 123-133, 2022.
Article in English | MEDLINE | ID: covidwho-1362119

ABSTRACT

BACKGROUND: The intensity of the thromboprophylaxis needed as a potential factor for preventing inpatient mortality due to coronavirus disease-19 (COVID-19) remains unclear. OBJECTIVE: To explore the association between anticoagulation intensity and COVID-19 survival. DESIGN AND SETTING: Retrospective observational study in a tertiary-level hospital in Spain. METHODS: Low-molecular-weight heparin (LMWH) status was ascertained based on prescription at admission. To control for immortal time bias, anticoagulant use was analyzed as a time-dependent variable. RESULTS: 690 patients were included (median age, 72 years). LMWH was administered to 615 patients, starting from hospital admission (89.1%). 410 (66.7%) received prophylactic-dose LMWH; 120 (19.5%), therapeutic-dose LMWH; and another 85 (13.8%) who presented respiratory failure, high D-dimer levels (> 3 mg/l) and non-worsening of inflammation markers received prophylaxis of intermediate-dose LMWH. The overall inpatient-mortality rate was 38.5%. The anticoagulant nonuser group presented higher mortality risk than each of the following groups: any LMWH users (HR 2.1; 95% CI: 1.40-3.15); the prophylactic-dose heparin group (HR 2.39; 95% CI, 1.57-3.64); and the users of heparin dose according to biomarkers (HR 6.52; 95% CI, 2.95-14.41). 3.4% of the patients experienced major hemorrhage. 2.8% of the patients developed an episode of thromboembolism. CONCLUSIONS: This observational study showed that LMWH administered at the time of admission was associated with lower mortality among unselected adult COVID-19 inpatients. The magnitude of the benefit may have been greatest for the intermediate-dose subgroup. Randomized controlled trials to assess the benefit of heparin within different therapeutic regimes for COVID-19 patients are required.


Subject(s)
COVID-19 , Venous Thromboembolism , Adult , Aged , Anticoagulants/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Inpatients , SARS-CoV-2
5.
PLoS One ; 16(4): e0240200, 2021.
Article in English | MEDLINE | ID: covidwho-1197366

ABSTRACT

BACKGROUND: Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management. METHODS: We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity. RESULTS: A total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression. CONCLUSIONS: This machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients.


Subject(s)
COVID-19/classification , Machine Learning , Adult , Aged , Area Under Curve , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , Cohort Studies , Female , Forecasting , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Models, Statistical , ROC Curve , Respiration, Artificial , Retrospective Studies , Risk Assessment , SARS-CoV-2/isolation & purification , Severity of Illness Index , Spain/epidemiology , Triage/methods
6.
EClinicalMedicine ; 25: 100454, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-638357

ABSTRACT

BACKGROUND: Identification of effective treatments in severe cases of COVID-19 requiring mechanical ventilation represents an unmet medical need. Our aim was to determine whether the administration of adipose-tissue derived mesenchymal stromal cells (AT-MSC) is safe and potentially useful in these patients. METHODS: Thirteen COVID-19 adult patients under invasive mechanical ventilation who had received previous antiviral and/or anti-inflammatory treatments (including steroids, lopinavir/ritonavir, hydroxychloroquine and/or tocilizumab, among others) were treated with allogeneic AT-MSC. Ten patients received two doses, with the second dose administered a median of 3 days (interquartile range-IQR- 1 day) after the first one. Two patients received a single dose and another patient received 3 doses. Median number of cells per dose was 0.98 × 106 (IQR 0.50 × 106) AT-MSC/kg of recipient's body weight. Potential adverse effects related to cell infusion and clinical outcome were assessed. Additional parameters analyzed included changes in imaging, analytical and inflammatory parameters. FINDINGS: First dose of AT-MSC was administered at a median of 7 days (IQR 12 days) after mechanical ventilation. No adverse events were related to cell therapy. With a median follow-up of 16 days (IQR 9 days) after the first dose, clinical improvement was observed in nine patients (70%). Seven patients were extubated and discharged from ICU while four patients remained intubated (two with an improvement in their ventilatory and radiological parameters and two in stable condition). Two patients died (one due to massive gastrointestinal bleeding unrelated to MSC therapy). Treatment with AT-MSC was followed by a decrease in inflammatory parameters (reduction in C-reactive protein, IL-6, ferritin, LDH and d-dimer) as well as an increase in lymphocytes, particularly in those patients with clinical improvement. INTERPRETATION: Treatment with intravenous administration of AT-MSC in 13 severe COVID-19 pneumonia under mechanical ventilation in a small case series did not induce significant adverse events and was followed by clinical and biological improvement in most subjects. FUNDING: None.

SELECTION OF CITATIONS
SEARCH DETAIL